The paper proposes in-memory computing (IMC) solution for the design and implementation of the Advanced Encryption Standard (AES) based cryptographic algorithm. This research aims at increasing the cyber security of autonomous driverless cars or robotic autonomous vehicles. The memristor (MR) designs are proposed in order to emulate the AES algorithm phases for efficient in-memory processing. The main features of this work are the following: a memristor 4bit state element is developed and used for implementing different arithmetic operations for AES hardware prototype; A pipeline AES design for massive parallelism and compatibility targeting MR integration; An FPGA implementation of AES-IMC based architecture with MR emulator. The AES-IMC outperforms existing architectures in both higher throughput, and energy efficiency. Compared with the conventional AES hardware, AES-IMC shows ~30% power enhancement with comparable throughput. As for state-of-the-art AES based NVM engines, AES-IMC has comparable power dissipation, and ~62% increased throughput. By enabling the cost-effective real-time deployment of the AES, the IMC architecture will prevent unintended accidents with unmanned devices caused by malicious attacks, including hijacking and unauthorized robot control.
翻译:本文提出了设计和实施高级加密标准(AES)基于加密算法的模拟计算(IMC)解决方案。该研究的目的是提高自动驾驶汽车或机器人自主汽车的网络安全性。Memristor(MR)的设计建议仿效AES算法阶段,以便提高模拟处理效率。这项工作的主要特征如下:为AES硬件原型开发了模拟4比特要素,并用于实施不同的计算操作;针对MR整合的大规模平行和兼容性设计管道AES设计;与MR模拟器一起实施基于AES-IMC的AES-IMC结构。AES-IMC在更高的吞吐量和能源效率两方面都超越了现有结构。与常规AES硬件相比,AES-IMC显示大约30%的功率和类似的吞吐量。与基于NVEM公司硬件的高级AES引擎相比,AES-IMC拥有相似的类似能力断电和兼容性兼容性设计;与MRMR整合一起实施AES-IMC的大规模平行和兼容性设计;FPGA-IMC实施基于M的建筑结构的A-62%的建筑设计。通过使A-MA-MIC-MA制式的机能实际控制导致了成本有效的实际攻击,包括无人机制式的机能性火箭式攻击,从而导致的机能性攻击的机能性机能性机能性机能性攻击,从而导致的机能性机能性机能性机能性机能性攻击,从而导致了航空机能和制。