As a class of state-dependent channels, Markov channels have been long studied in information theory for characterizing the feedback capacity and error exponent. This paper studies a more general variant of such channels where the state evolves via a general stochastic process, not necessarily Markov or ergodic. The states are assumed to be unknown to the transmitter and the receiver, but the underlying probability distributions are known. For this setup, we derive an upper bound on the feedback error exponent and the feedback capacity with variable-length codes. The bounds are expressed in terms of the directed mutual information and directed relative entropy. The bounds on the error exponent are simplified to Burnashev's expression for discrete memoryless channels. Our method relies on tools from the theory of martingales to analyze a stochastic process defined based on the entropy of the message given the past channel's outputs.
翻译:Markov 频道作为依赖国家渠道的类别,在信息理论中长期研究信息理论,以描述反馈能力和错误提示。本文研究了国家通过一般随机过程演变的这种渠道的更一般的变体,不一定是Markov 或 ergodic 。 假设发射机和接收机不知道州, 但基本概率分布是已知的。 对于这个设置, 我们从反馈错误推理和反馈能力中获取一个上限, 并用不同长度的代码。 界限以直接的相互信息和直接的相对信箱表示。 错误缩放的界限被简化为Burnashev 表达离散的内存频道。 我们的方法依靠马丁加略理论的工具来分析基于过去频道输出的信息的英特盘定义的随机进程。