In this paper, we propose a lattice Boltzmann (LB) model for the generalized coupled cross-diffusion-fluid system. Through the direct Taylor expansion method, the proposed LB model can correctly recover the macroscopic equations. The cross diffusion terms in the coupled system are modeled by introducing additional collision operators, which can be used to avoid special treatments for the gradient terms. In addition, the auxiliary source terms are constructed properly such that the numerical diffusion caused by the convection can be eliminated. We adopt the developed LB model to study two important systems, i.e., the coupled chemotaxis-fluid system and the double-diffusive convection system with Soret and Dufour effects. We first test the present LB model through considering a steady-state case of coupled chemotaxis-fluid system, then we analyze the influences of some physical parameters on the formation of sinking plumes. Finally, the double-diffusive natural convection system with Soret and Dufour effects is also studied, and the numerical results agree well with some previous works.


翻译:在本文中,我们为普遍结合的交叉扩散流系统提出了一个Lattice Boltzmann(LB)模型(LB)模型。通过直接的Taylor扩展法,提议的LB模型可以正确地回收宏观方程式。结合系统中的交叉扩散条件通过引入额外的碰撞操作器进行建模,这些操作器可以用来避免对梯度术语的特殊处理。此外,辅助源术语的构建得当,可以消除对流造成的数字扩散。我们采用了开发的LB模型来研究两个重要的系统,即加在一起的化学-浮流系统和带有 Soret 和 Dufour 效应的双吸附式对流系统。我们首先通过考虑一个固定状态的混合铬法- fluid 系统来测试目前的LB模型,然后我们分析一些物理参数对沉积羽流形成的影响。最后,还研究了具有 Soret和 Dufour效应的双吸附式自然对流系统,并且数字结果与以前的一些工作十分一致。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Top
微信扫码咨询专知VIP会员