While open databases are an important resource in the Deep Learning (DL) era, they are sometimes used "off-label": data published for one task are used for training algorithms for a different one. This work aims to highlight that in some cases, this common practice may lead to biased, overly-optimistic results. We demonstrate this phenomenon for inverse problem solvers and show how their biased performance stems from hidden data preprocessing pipelines. We describe two preprocessing pipelines typical of open-access databases and study their effects on three well-established algorithms developed for Magnetic Resonance Imaging (MRI) reconstruction: Compressed Sensing (CS), Dictionary Learning (DictL), and DL. In this large-scale study we performed extensive computations. Our results demonstrate that the CS, DictL and DL algorithms yield systematically biased results when na\"ively trained on seemingly-appropriate data: the Normalized Root Mean Square Error (NRMSE) improves consistently with the preprocessing extent, showing an artificial increase of 25%-48% in some cases. Since this phenomenon is generally unknown, biased results are sometimes published as state-of-the-art; we refer to that as subtle inverse crimes. This work hence raises a red flag regarding na\"ive off-label usage of Big Data and reveals the vulnerability of modern inverse problem solvers to the resulting bias.


翻译:虽然开放数据库是深层学习(DL)时代的一个重要资源,但有时使用“关闭标签”:为一项任务公布的数据被用于不同任务的培训算法。 这项工作旨在强调, 在某些情况下, 这种常见做法可能导致偏向, 过于乐观的结果。 我们为反问题解答者展示了这个现象, 并展示了它们有偏差的性能如何产生于隐藏的数据处理前管道。 我们描述了两个以开放访问数据库为典型的预处理管道, 并研究了它们对为磁共振成像(MRI)重建(MRI)开发的三个完善的算法的影响: 压缩感测(CS)、 词典学习(DictL) 和 DL 。 在本次大规模研究中, 我们进行了广泛的计算。 我们的结果显示, CS、 DictL 和 DL 算法在进行关于貌似适当的数据的训练时会产生系统性的偏差结果 。 我们描述的是, 正常的原始平方差错误(NRMSE) 与预处理程度一致地改善了它们的效果, 在某些案例中显示人为增加了25- 48 % 。 由于这种偏差值的结果, 因此, 我们在国旗上的偏差值上显示, 显示, 导致的精确的变差值数据显示, 。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年5月21日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员