Stratifying factors, like age and gender, can modify the effect of treatments and exposures on risk of a studied outcome. Several effect measures, including the relative risk, hazard ratio, odds ratio, and risk difference, can be used to measure this modification. It is known that choice of effect measure may determine the presence and direction of effect-measure modification. We show that considering the opposite outcome -- for example, recovery instead of death -- may similarly influence effect-measure modification. In fact, if the relative risk for the studied outcome and the relative risk for the opposite outcome agree about the direction of effect-measure modification, then so will the two cumulative hazard ratios, the risk difference, and the odds ratio. When risks are randomly sampled from the uniform (0,1) distribution, the probability of this happening is 5/6. Disagreement is probable enough that researchers considering one relative risk should also consider the other and further discussion if they disagree. (If possible, researchers should also report estimated risks.) We provide examples through case studies on HCV, COVID-19, and bankruptcy following melanoma treatment.


翻译:年龄和性别等分层因素可以改变治疗和接触对研究结果的风险的影响,可以使用若干效果措施来衡量这一修改,包括相对风险、危险比率、概率比和风险差异,众所周知,选择效果措施可能决定效果措施的修改的存在和方向。我们表明,考虑相反的结果 -- -- 例如,恢复而不是死亡 -- -- 也可能同样影响效果措施的修改。事实上,如果研究结果的相对风险和相反结果的相对风险就效果措施的修改方向达成一致,那么两种累积危险比率、风险差异和概率比率也将如此。当风险从制服(0,1)分布中随机抽样时,发生这种情况的概率是5/6。考虑到一个相对风险的研究人员也应考虑另一个风险的分歧是可能的,如果他们不同意的话,则应该报告估计的风险。我们通过HCV、COVID-19和梅兰诺马处理后破产的案例研究提供例子。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
1+阅读 · 2022年1月6日
Arxiv
0+阅读 · 2022年1月6日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
12+阅读 · 2021年6月29日
Arxiv
14+阅读 · 2020年12月17日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员