A linear mixed-effects (LME) model is proposed for modelling and forecasting single and multi-population age-specific death rates (ASDRs). The innovative approach that we take in this study treats age, the interaction between gender and age, their interactions with predictors, and cohort as fixed effects. Furthermore, we incorporate additional random effects to account for variations in the intercept, predictor coefficients, and cohort effects among different age groups of females and males across various countries. In the single-population case, we will see how the random effects of intercept and slope change over different age groups. We will show that the LME model is identifiable. Using simulating parameter uncertainty in the LME model, we will calculate 95% uncertainty intervals for death rate forecasts. We will use data from the Human Mortality Database (HMD) to illustrate the procedure. We assess the predictive performance of the LME model in comparison to the Lee-Carter (LC) models fitted to individual populations. Additionally, we evaluate the predictive accuracy of the LME model relative to the Li-Lee (LL) model. Our results indicate that the LME model provides a more precise representation of observed mortality rates within the HMD, demonstrates robustness in calibration rate selection, and exhibits superior performance when contrasted with the LC and LL models.


翻译:本研究提出一种线性混合效应(LME)模型,用于建模和预测单一人群及多个人群的年龄别死亡率(ASDRs)。我们采用的创新方法将年龄、性别与年龄的交互作用、它们与预测变量的交互作用以及队列效应视为固定效应。此外,我们引入了额外的随机效应,以解释不同国家中女性和男性各年龄组在截距、预测变量系数及队列效应上的变异。在单一人群案例中,我们将展示截距和斜率的随机效应如何随不同年龄组变化。我们将证明LME模型是可识别的。通过模拟LME模型中的参数不确定性,我们将计算死亡率预测的95%不确定区间。我们将使用人类死亡率数据库(HMD)的数据来演示该流程。我们评估了LME模型的预测性能,并与针对单一人群拟合的Lee-Carter(LC)模型进行比较。此外,我们还评估了LME模型相对于Li-Lee(LL)模型的预测准确性。结果表明,LME模型能更精确地表示HMD中观测到的死亡率,在校准率选择上表现出稳健性,并且在与LC和LL模型对比时展现出更优的性能。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
24+阅读 · 2024年2月23日
Arxiv
13+阅读 · 2023年2月7日
Arxiv
15+阅读 · 2020年2月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
24+阅读 · 2024年2月23日
Arxiv
13+阅读 · 2023年2月7日
Arxiv
15+阅读 · 2020年2月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员