We present a parallel k-clique listing algorithm with improved work bounds (for the same depth) in sparse graphs with low degeneracy or arboricity. We achieve this by introducing and analyzing a new pruning criterion for a backtracking search. Our algorithm has better asymptotic performance, especially for larger cliques (when k is not constant), where we avoid the straightforwardly exponential runtime growth with respect to the clique size. In particular, for cliques that are a constant factor smaller than the graph's degeneracy, the work improvement is an exponential factor in the clique size compared to previous results. Moreover, we present a low-depth approximation to the community degeneracy (which can be arbitrarily smaller than the degeneracy). This approximation enables a low depth clique listing algorithm whose runtime is parameterized by the community degeneracy.
翻译:我们在低降解度或偏差度的稀薄图表中提出了一种平行的K-Clique列表算法,其工作界限(同一深度)得到了改进。我们通过引入和分析新的回溯跟踪搜索运行标准实现了这一点。我们的算法有更好的无症状性能,特别是对于较大的 cliques(当 k 不固定时),我们避免了相对于 clique 尺寸的直线指数性运行时间增长。特别是对于比图形的退化性能更小的恒定因子来说,工作改进是相对于先前结果而言的分层大小的一个指数性系数。此外,我们向社区分流能力(它可能任意地小于退化性能)展示了一种低深度的近似值。这种近似使运行时间由社区分解度参数参数的低深度组合列表算法成为了一种低深度的计算法。