Parallelism has become extremely popular over the past decade, and there have been a lot of new parallel algorithms and software. The randomized work-stealing (RWS) scheduler plays a crucial role in this ecosystem. In this paper, we study two important topics related to the randomized work-stealing scheduler. Our first contribution is a simplified, classroom-ready version of analysis for the RWS scheduler. The theoretical efficiency of the RWS scheduler has been analyzed for a variety of settings, but most of them are quite complicated. In this paper, we show a new analysis, which we believe is easy to understand, and can be especially useful in education. We avoid using the potential function in the analysis, and we assume a highly asynchronous setting, which is more realistic for today's parallel machines. Our second and main contribution is some new parallel cache complexity for algorithms using the RWS scheduler. Although the sequential I/O model has been well-studied over the past decades, so far very few results have extended it to the parallel setting. The parallel cache bounds of many existing algorithms are affected by a polynomial of the span, which causes a significant overhead for high-span algorithms. Our new analysis decouples the span from the analysis of the parallel cache complexity. This allows us to show new parallel cache bounds for a list of classic algorithms. Our results are only a polylogarithmic factor off the lower bounds, and significantly improve previous results.
翻译:近十年来,平行线性已经变得非常受欢迎, 并且有很多新的平行算法和软件。 随机工作追踪( RWS) 调度器在这个生态系统中发挥着关键作用 。 在本文中, 我们研究与随机工作追踪调度仪相关的两个重要主题 。 我们的第一个贡献是对 RWS 调度器的分析进行简化的、 课堂版的分析。 虽然对 RWS 调度器的理论效率进行了各种设置的分析, 但其中多数是相当复杂的 。 在本文中, 我们展示了一种新的分析, 我们认为这很容易理解, 并且可能对教育特别有用 。 我们避免在分析中使用潜在功能, 而我们假设了一个高度不同步的设置。 这对今天的平行机器来说更为现实。 我们的第二个和主要贡献是对使用 RWS 调度器的算法进行一些新的平行的存储器复杂性。 尽管过去几十年里对序列 I/ O 模型进行了很好地研究, 但很少的结果扩大到平行的设置 。 许多现有算法的平行缓存线在教育中特别有用 。 我们的常规运算法的快速分析结果会大大地受到一个超常态的路径分析的影响 。