Let $G=(V, E)$ be an undirected graph. The set $N_G[x]=\{y\in V|xy\in E\}\cup \{x\}$ is called the closed neighbourhood of a vertex $x\in V$ and for an edge $e=xy\in E$, the closed neighbourhood of $e$ is the set $N_G[x]\cup N_G[y]$, which is denoted by $N_G[e]$ or $N_G[xy]$. A set $L\subseteq V$ is called \emph{liar's vertex-edge dominating set} of a graph $G=(V,E)$ if for every $e_i\in E$, $|N_G[e_i]\cap L|\geq 2$ and for every pair of distinct edges $e_i,e_j\in E$, $|(N_G[e_i]\cup N_G[e_j])\cap L|\geq 3$. The notion of liar's vertex-edge domination arises naturally from some applications in communication networks. Given a graph $G$, the \textsc{Minimum Liar's Vertex-Edge Domination Problem} (\textsc{MinLVEDP}) asks to find a liar's vertex-edge dominating set of $G$ of minimum cardinality. In this paper, we study this problem from an algorithmic point of view. We design two linear time algorithms for \textsc{MinLVEDP} in block graphs and proper interval graphs, respectively. On the negative side, we show that the decision version of liar's vertex-edge domination problem is NP-complete for undirected path graphs.
翻译:设 $G=(V, E)$ 为一个无向图。集合 $N_G[x]=\{y\in V|xy\in E\}\cup \{x\}$ 称为顶点 $x\in V$ 的闭邻域,对于边 $e=xy\in E$,其闭邻域为集合 $N_G[x]\cup N_G[y]$,记作 $N_G[e]$ 或 $N_G[xy]$。若集合 $L\subseteq V$ 满足:对于每条边 $e_i\in E$,均有 $|N_G[e_i]\cap L|\geq 2$;且对于任意两条不同边 $e_i,e_j\in E$,均有 $|(N_G[e_i]\cup N_G[e_j])\cap L|\geq 3$,则称 $L$ 为图 $G=(V,E)$ 的\emph{骗子顶点-边支配集}。骗子顶点-边支配的概念源于通信网络中的若干应用。给定图 $G$,\textsc{最小骗子顶点-边支配问题} (\textsc{MinLVEDP}) 要求找出 $G$ 中基数最小的骗子顶点-边支配集。本文从算法角度研究该问题,分别为块图和真区间图设计了求解 \textsc{MinLVEDP} 的线性时间算法。在负面结果方面,我们证明了无向路径图的骗子顶点-边支配问题的判定版本是 NP 完全的。