The widespread adoption of Free/Libre and Open Source Software (FLOSS) means that the ongoing maintenance of many widely used software components relies on the collaborative effort of volunteers who set their own priorities and choose their own tasks. We argue that this has created a new form of risk that we call 'underproduction' which occurs when the supply of software engineering labor becomes out of alignment with the demand of people who rely on the software produced. We present a conceptual framework for identifying relative underproduction in software as well as a statistical method for applying our framework to a comprehensive dataset from the Debian GNU/Linux distribution that includes 21,902 source packages and the full history of 461,656 bugs. We draw on this application to present two experiments: (1) a demonstration of how our technique can be used to identify at-risk software packages in a large FLOSS repository and (2) a validation of these results using an alternate indicator of package risk. Our analysis demonstrates both the utility of our approach and reveals the existence of widespread underproduction in a range of widely-installed software components in Debian.


翻译:广泛采用自由/利伯尔软件和开放源码软件(FLOSS)意味着,持续维护许多广泛使用的软件组件取决于自愿者的合作努力,他们确定自己的优先事项和选择自己的任务。我们争辩说,这造成了一种我们称之为“生产不足”的新风险形式,即当软件工程劳动力的供应与依赖所生产的软件的人的需求脱节时,我们就会出现这种风险。我们提出了一个概念框架,用以查明软件生产相对不足的情况,以及一种统计方法,用以将我们的框架应用于Debian GNU/利努斯发行的综合数据集,该数据集包括21,902个源包和461,656个错误的全部历史。我们利用这一应用来介绍两个实验:(1) 展示我们如何利用技术在大型FLOSS储存库中识别风险软件包,(2) 使用一个替代的包风险指标验证这些结果。我们的分析表明我们的方法的效用,并显示在Debian广泛安装的软件组件中存在广泛生产的不足现象。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员