We study stopping rules for stochastic gradient descent (SGD) for convex optimization from the perspective of anytime-valid confidence sequences. Classical analyses of SGD provide convergence guarantees in expectation or at a fixed horizon, but offer no statistically valid way to assess, at an arbitrary time, how close the current iterate is to the optimum. We develop an anytime-valid, data-dependent upper confidence sequence for the weighted average suboptimality of projected SGD, constructed via nonnegative supermartingales and requiring no smoothness or strong convexity. This confidence sequence yields a simple stopping rule that is provably $\varepsilon$-optimal with probability at least $1-α$ and is almost surely finite under standard stochastic approximation stepsizes. To the best of our knowledge, these are the first rigorous, time-uniform performance guarantees and finite-time $\varepsilon$-optimality certificates for projected SGD with general convex objectives, based solely on observable trajectory quantities.


翻译:本文从任意时间有效置信序列的视角,研究凸优化中随机梯度下降(SGD)的停止准则。经典的SGD分析提供了期望或固定迭代次数下的收敛性保证,但无法在任意时刻以统计有效的方式评估当前迭代点与最优解之间的接近程度。我们通过非负上鞅方法,构建了投影SGD加权平均次优性的任意时间有效、数据依赖型上置信序列,该构造无需光滑性或强凸性假设。该置信序列导出一个简单的停止准则,可在概率至少为$1-α$的条件下保证$ε$-最优性,并在标准随机逼近步长下几乎必然有限停止。据我们所知,这是首次针对一般凸目标函数的投影SGD,仅基于可观测的迭代轨迹量,给出严格的时间一致性能保证与有限时间$ε$-最优性验证。

0
下载
关闭预览

相关内容

数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
专知会员服务
19+阅读 · 2021年8月15日
专知会员服务
12+阅读 · 2021年6月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员