Forest-based methods have recently gained in popularity for non-parametric treatment effect estimation. Building on this line of work, we introduce causal survival forests, which can be used to estimate heterogeneous treatment effects in a survival and observational setting where outcomes may be right-censored. Our approach relies on orthogonal estimating equations to robustly adjust for both censoring and selection effects. In our experiments, we find our approach to perform well relative to a number of baselines.
翻译:以森林为基础的方法最近在非参数处理效果估计方面越来越受欢迎。 在这项工作的基础上,我们引入了因果生存森林,这可用于估算生存和观察环境中的不同处理效果,结果可能是右审查的结果。我们的方法依靠正对数估计方程,以对检查和选择效果进行有力的调整。在我们的实验中,我们发现我们的方法是相对于一些基线运行良好。