We introduce Pathfinder, a variational method for approximately sampling from differentiable log densities. Starting from a random initialization, Pathfinder locates normal approximations to the target density along a quasi-Newton optimization path, with local covariance estimated using the inverse Hessian estimates produced by the optimizer. Pathfinder returns draws from the approximation with the lowest estimated Kullback-Leibler (KL) divergence to the true posterior. We evaluate Pathfinder on a wide range of posterior distributions, demonstrating that its approximate draws are better than those from automatic differentiation variational inference (ADVI) and comparable to those produced by short chains of dynamic Hamiltonian Monte Carlo (HMC), as measured by 1-Wasserstein distance. Compared to ADVI and short dynamic HMC runs, Pathfinder requires one to two orders of magnitude fewer log density and gradient evaluations, with greater reductions for more challenging posteriors. Importance resampling over multiple runs of Pathfinder improves the diversity of approximate draws, reducing 1-Wasserstein distance further and providing a measure of robustness to optimization failures on plateaus, saddle points, or in minor modes. The Monte Carlo KL-divergence estimates are embarrassingly parallelizable in the core Pathfinder algorithm, as are multiple runs in the resampling version, further increasing Pathfinder's speed advantage with multiple cores.
翻译:我们引入了“ 引导器 ”, 这是一种从不同日志密度进行大致抽样的变异方法。 从随机初始化开始, 引导器在准牛顿优化路径上将正常近似点定位到目标密度, 在准牛顿优化路径上将目标密度定位为正常近似点, 使用优化者生成的逆向黑森估计值进行本地共变估算。 引导器的返回从最低估计 Kllback- Leiber (KL) 偏差的近似点提取到真实的远端。 我们从最低估计的 Kllback- Leibel (KL) 与真实的远端值估算值相比, 我们从最低估计的 Kullback- Leiber (KL) 和真正的后端值的偏差值取来。 我们从一系列后端分布的“ ” 评估中评估“, 显示其近端分布优于自动差异变异感( ADDVI) 的近点, 并且比由动态汉密尔顿· 蒙特卡洛(HMC) 的短路路段短路段产生的短路段 。,, 方向的软缩缩缩缩缩缩缩缩缩为方向的误。