We study algebraic neural networks (AlgNNs) with commutative algebras which unify diverse architectures such as Euclidean convolutional neural networks, graph neural networks, and group neural networks under the umbrella of algebraic signal processing. An AlgNN is a stacked layered information processing structure where each layer is conformed by an algebra, a vector space and a homomorphism between the algebra and the space of endomorphisms of the vector space. Signals are modeled as elements of the vector space and are processed by convolutional filters that are defined as the images of the elements of the algebra under the action of the homomorphism. We analyze stability of algebraic filters and AlgNNs to deformations of the homomorphism and derive conditions on filters that lead to Lipschitz stable operators. We conclude that stable algebraic filters have frequency responses -- defined as eigenvalue domain representations -- whose derivative is inversely proportional to the frequency -- defined as eigenvalue magnitudes. It follows that for a given level of discriminability, AlgNNs are more stable than algebraic filters, thereby explaining their better empirical performance. This same phenomenon has been proven for Euclidean convolutional neural networks and graph neural networks. Our analysis shows that this is a deep algebraic property shared by a number of architectures.


翻译:我们用交替代数来研究代数神经网络(ALGNNS),这些代数将各种结构(如Euclidean convolutional 神经网络、图形神经网络和在代数信号处理处理伞下的群神经网络)统一起来。AorgNNN是一个堆叠的层层信息处理结构,每个层都由代数、矢量空间和矢量空间内貌空间之间的同质性能匹配。信号以矢量空间的元素为模型,由脉冲过滤器处理,这些结构的定义是同质神经网络中升数的图像。我们分析升数过滤器和阿尔格NGNNS的稳定性,以改变同质性能,在过滤器上创造条件,导致Lipschitz稳定的操作者。我们的结论是,稳定的代数过滤器的频率反应 -- 被定义为乙基值域图解的频率 -- 其衍生物与频率反成正比 -- 被同源值过滤器的过滤器过滤器过滤器,被定义为同质性等值的内值,我们分析结果的数值网络的稳定性和内值程度更能,因此更能更证明了。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月22日
Graph Analysis and Graph Pooling in the Spatial Domain
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员