We address the problem of efficiently organizing search over very large trees, which arises in many applications ranging from autonomous driving to aerial vehicles. Here, we are motivated by off-road autonomy, where real-time planning is essential. Classical approaches use graphs of motion primitives and exploit dominance to mitigate the curse of dimensionality and prune expansions efficiently. However, for complex dynamics, repeatedly solving two-point boundary-value problems makes graph construction too slow for fast kinodynamic planning. Hybrid A* (HA*) addressed this challenge by searching over a tree of motion primitives and introducing approximate pruning using a grid-based dominance check. However, choosing the grid resolution is difficult: too coarse risks failure, while too fine leads to excessive expansions and slow planning. We propose Incremental Generalized Hybrid A* (IGHA*), an anytime tree-search framework that dynamically organizes vertex expansions without rigid pruning. IGHA* provably matches or outperforms HA*. For both on-road kinematic and off-road kinodynamic planning queries for a car-like robot, variants of IGHA* use 6x fewer expansions to the best solution compared to an optimized version of HA* (HA*M, an internal baseline). In simulated off- road experiments in a high-fidelity simulator, IGHA* outper- forms HA*M when both are used in the loop with a model predictive controller. We demonstrate real-time performance both in simulation and on a small-scale off-road vehicle, enabling fast, robust planning under complex dynamics. Website: https: //personalrobotics.github.io/IGHAStar/


翻译:本文针对从自动驾驶到飞行器等多种应用中出现的超大规模树搜索高效组织问题展开研究。我们主要关注越野自主导航领域,其中实时路径规划至关重要。传统方法采用运动基元图,并利用支配关系来缓解维度灾难并高效剪枝扩展。然而,对于复杂动力学系统,重复求解两点边值问题导致图构建过程过于缓慢,难以实现快速运动动力学规划。混合A*算法(HA*)通过搜索运动基元树并引入基于网格的近似支配性剪枝来应对这一挑战。但网格分辨率的选择存在困难:分辨率过低可能导致规划失败,过高则会导致扩展次数激增和规划速度下降。我们提出增量广义混合A*算法(IGHA*),这是一种动态组织顶点扩展而无须刚性剪枝的即时树搜索框架。理论证明IGHA*在性能上匹配或优于HA*算法。针对类车机器人的道路运动学与越野运动动力学规划问题,IGHA*的多种变体在获得最优解时,相比优化版HA*算法(内部基准HA*M)减少了6倍的扩展次数。在高保真模拟器的越野仿真实验中,当IGHA*与HA*M均与模型预测控制器闭环运行时,IGHA*表现出更优性能。我们在仿真环境和小型越野车辆平台上均验证了该算法的实时性能,实现了复杂动力学条件下的快速鲁棒规划。项目网站:https://personalrobotics.github.io/IGHAStar/

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
【AAAI2023】基于Dirichlet元模型的事后不确定性学习
专知会员服务
16+阅读 · 2022年12月16日
专知会员服务
69+阅读 · 2021年4月27日
专知会员服务
22+阅读 · 2021年4月15日
【NeurIPS2020-FB】学习具有可解码信息瓶颈的最优表示
专知会员服务
23+阅读 · 2020年10月13日
专知会员服务
29+阅读 · 2020年10月2日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
从最大似然到EM算法:一致的理解方式
PaperWeekly
19+阅读 · 2018年3月19日
图上的归纳表示学习
科技创新与创业
23+阅读 · 2017年11月9日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月24日
VIP会员
相关VIP内容
【AAAI2023】基于Dirichlet元模型的事后不确定性学习
专知会员服务
16+阅读 · 2022年12月16日
专知会员服务
69+阅读 · 2021年4月27日
专知会员服务
22+阅读 · 2021年4月15日
【NeurIPS2020-FB】学习具有可解码信息瓶颈的最优表示
专知会员服务
23+阅读 · 2020年10月13日
专知会员服务
29+阅读 · 2020年10月2日
相关资讯
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
从最大似然到EM算法:一致的理解方式
PaperWeekly
19+阅读 · 2018年3月19日
图上的归纳表示学习
科技创新与创业
23+阅读 · 2017年11月9日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员