We consider a discrete-time nonatomic routing game with variable demand and uncertain costs. Given a routing network with single origin and destination, the cost function of each edge depends on some uncertain persistent state parameter. At every period, a random traffic demand is routed through the network according to a Wardrop equilibrium. The realized costs are publicly observed and the public Bayesian belief about the state parameter is updated. We say that there is strong learning when beliefs converge to the truth and weak learning when the equilibrium flow converges to the complete-information flow. We characterize the networks for which learning occurs. We prove that these networks have a series-parallel structure and provide a counterexample to show that learning may fail in non-series-parallel networks.
翻译:我们考虑的是不同时间的非原子路由游戏,它有可变的需求和不确定的成本。考虑到一个有单一来源和目的地的路线网络,每个边缘的成本功能取决于某些不确定的持久性状态参数。在每一个时期,随机的交通需求都根据Wardrout 平衡通过网络。已实现的成本被公开观察,而巴伊斯公众对州参数的信念被更新。我们说,当平衡流向完整信息流时,人们的信念与真理趋同,而学习不力时,就会学到很多。我们给学习的网络定性。我们证明,这些网络有一系列平行结构,并提供反实例,表明学习在非系列并行网络中可能失败。