We study single-sample prophet inequalities (SSPIs), i.e., prophet inequalities where only a single sample from each prior distribution is available. Besides a direct, and optimal, SSPI for the basic single choice problem [Rubinstein et al., 2020], most existing SSPI results were obtained via an elegant, but inherently lossy, reduction to order-oblivious secretary (OOS) policies [Azar et al., 2014]. Motivated by this discrepancy, we develop an intuitive and versatile greedy-based technique that yields SSPIs directly rather than through the reduction to OOSs. Our results can be seen as generalizing and unifying a number of existing results in the area of prophet and secretary problems. Our algorithms significantly improve on the competitive guarantees for a number of interesting scenarios (including general matching with edge arrivals, bipartite matching with vertex arrivals, and certain matroids), and capture new settings (such as budget additive combinatorial auctions). Complementing our algorithmic results, we also consider mechanism design variants. Finally, we analyze the power and limitations of different SSPI approaches by providing a partial converse to the reduction from SSPI to OOS given by Azar et al.
翻译:我们研究了单一样本先知的不平等,即先知的不平等(SSPIS),即:先知的不平等,每个先前的分布只有单一样本。除了直接和最佳的对基本单一选择问题[Rubinstein等人,2020年]的最优化的SSPIS结果外,大多数现有的SSPI结果都是通过优雅但固有的损失获得的,减少到有秩序可见的秘书(OOS)政策[Azar等人,2014年]。受这一差异的驱使,我们开发了一种直观和多功能的贪婪基础技术,直接产生SSPIS,而不是通过减少OOS。我们的结果可以被看作是对先知和秘书问题领域的一些现有结果的概括和统一。我们的算法大大改进了一些有趣的情景的竞争保障(包括与边缘抵达者的一般匹配,双方与顶端抵达者以及某些配方机器人的匹配),并捕捉了新的环境(如预算添加的组合拍卖)。我们对我们的算法结果进行了补充,我们还考虑了机制设计变体。最后,我们通过提供部分的对从SSPISIS方法到亚的削减。