Graph theory is an interdisciplinary field of study that has various applications in mathematical modeling and computer science. Research in graph theory depends on the creation of not only theorems but also conjectures. Conjecture-refuting algorithms attempt to refute conjectures by searching for counterexamples to those conjectures, often by maximizing certain score functions on graphs. This study proposes a novel conjecture-refuting algorithm, referred to as the adaptive Monte Carlo search (AMCS) algorithm, obtained by modifying the Monte Carlo tree search algorithm. Evaluated based on its success in finding counterexamples to several graph theory conjectures, AMCS outperforms existing conjecture-refuting algorithms. The algorithm is further utilized to refute six open conjectures, two of which were chemical graph theory conjectures formulated by Liu et al. in 2021 and four of which were formulated by the AutoGraphiX computer system in 2006. Finally, four of the open conjectures are strongly refuted by generalizing the counterexamples obtained by AMCS to produce a family of counterexamples. It is expected that the algorithm can help researchers test graph-theoretic conjectures more effectively.
翻译:暂无翻译