We consider the problem of computing the Boolean convolution (with wraparound) of $n$~vectors of dimension $m$, or, equivalently, the problem of computing the sumset $A_1+A_2+\ldots+A_n$ for $A_1,\ldots,A_n \subseteq \mathbb{Z}_m$. Boolean convolution formalizes the frequent task of combining two subproblems, where the whole problem has a solution of size $k$ if for some $i$ the first subproblem has a solution of size~$i$ and the second subproblem has a solution of size $k-i$. Our problem formalizes a natural generalization, namely combining solutions of $n$ subproblems subject to a modular constraint. This simultaneously generalises Modular Subset Sum and Boolean Convolution (Sumset Computation). Although nearly optimal algorithms are known for special cases of this problem, not even tiny improvements are known for the general case. We almost resolve the computational complexity of this problem, shaving essentially a factor of $n$ from the running time of previous algorithms. Specifically, we present a \emph{deterministic} algorithm running in \emph{almost} linear time with respect to the input plus output size $k$. We also present a \emph{Las Vegas} algorithm running in \emph{nearly} linear expected time with respect to the input plus output size $k$. Previously, no deterministic or randomized $o(nk)$ algorithm was known. At the heart of our approach lies a careful usage of Kneser's theorem from Additive Combinatorics, and a new deterministic almost linear output-sensitive algorithm for non-negative sparse convolution. In total, our work builds a solid toolbox that could be of independent interest.


翻译:我们考虑的是计算Boolean Convolution(以包装方式) 的问题。 计算Boolean convolution(以包装方式) 的经常任务是合并两个子问题, 整个问题有股本的解决方案, 如果对于某些美元来说, 第一个子问题的计算法有 美元 的解算法, 或者, 等量的计算总和 A_ 1+A_ 2 ⁇ ldots+A_ n$, A_ 1\ldots, A_ n_ subseteqeq \ mumathb ⁇ m 。 Bolean convolution 既可以同时将Modular Subset Sum 和 Boolean Convolution (Sums Compation) 合并在一起, 如果对于第一个问题的特殊案例来说, 整个问题有近乎最佳的算法方法。 对于一般案例来说,甚至没有微小的改进。 我们几乎可以解决一个 美元的内值的内值的内值的内值 和内值的内值 。

0
下载
关闭预览

相关内容

在数学(特别是功能分析)中,卷积是对两个函数(f和g)的数学运算,产生三个函数,表示第一个函数的形状如何被另一个函数修改。 卷积一词既指结果函数,又指计算结果的过程。 它定义为两个函数的乘积在一个函数反转和移位后的积分。 并针对所有shift值评估积分,从而生成卷积函数。
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
On Simple Mechanisms for Dependent Items
Arxiv
0+阅读 · 2021年6月25日
Arxiv
0+阅读 · 2021年6月22日
SlowFast Networks for Video Recognition
Arxiv
4+阅读 · 2019年4月18日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员