Training Mixture-of-Experts (MoE) models introduces sparse and highly imbalanced all-to-all communication that dominates iteration time. Conventional load-balancing methods fail to exploit the deterministic topology of Rail architectures, leaving multi-NIC bandwidth underutilized. We present RailS, a distributed load-balancing framework that minimizes all-to-all completion time in MoE training. RailS leverages the Rail topology's symmetry to prove that uniform sending ensures uniform receiving, transforming global coordination into local scheduling. Each node independently executes a Longest Processing Time First (LPT) spraying scheduler to proactively balance traffic using local information. RailS activates N parallel rails for fine-grained, topology-aware multipath transmission. Across synthetic and real-world MoE workloads, RailS improves bus bandwidth by 20%--78% and reduces completion time by 17%--78%. For Mixtral workloads, it shortens iteration time by 18%--40% and achieves near-optimal load balance, fully exploiting architectural parallelism in distributed training.


翻译:训练混合专家(MoE)模型引入了稀疏且高度不均衡的全对全通信,该通信主导了迭代时间。传统的负载均衡方法未能利用Rail架构的确定性拓扑结构,导致多网卡带宽利用率不足。我们提出了RailS,一种分布式负载均衡框架,旨在最小化MoE训练中的全对全完成时间。RailS利用Rail拓扑的对称性,证明了均匀发送可确保均匀接收,从而将全局协调转化为本地调度。每个节点独立执行最长处理时间优先(LPT)喷射调度器,利用本地信息主动平衡流量。RailS激活N条并行轨道,实现细粒度、拓扑感知的多路径传输。在合成和真实世界的MoE工作负载中,RailS将总线带宽提升了20%--78%,并将完成时间减少了17%--78%。对于Mixtral工作负载,它将迭代时间缩短了18%--40%,并实现了近乎最优的负载均衡,充分挖掘了分布式训练中的架构并行性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员