Evaluating the importance of a network node is a crucial task in network science and graph data mining. H-index is a popular centrality measure for this task, however, there is still a lack of its interpretation from a rigorous statistical aspect. Here we show the statistical nature of h-index from the perspective of order statistics, and we obtain a new family of centrality indices by generalizing the h-index along this direction. The theoretical and empirical evidences show that such a statistical interpretation enables us to obtain a general and versatile framework for quantifying the importance of a network node. Under this framework, many new centrality indices can be derived and some of which can be more accurate and robust than h-index. We believe that this research opens up new avenues for developing more effective indices for node importance quantification from a viewpoint that still remains unexplored.
翻译:评估网络节点的重要性是网络科学和图形数据挖掘中的一项关键任务。 H-index是衡量这一任务的一个普遍的核心尺度,然而,从严格的统计方面来看,H-index仍然缺乏对它的解释。这里我们从秩序统计的角度显示了h-index的统计性质,我们沿着这个方向对h-index进行概括,从而获得了新的核心指数系列。理论和经验证据表明,这种统计解释使我们能够获得一个通用和多功能的框架来量化网络节点的重要性。在这个框架内,可以得出许多新的中心点指数,其中一些指数比h-index更准确和有力。我们认为,这一研究开辟了新的途径,从仍未探索的观点出发,为节点重要性的量化制定更有效的指数。