Enterprise data typically involves multiple heterogeneous data sources and external data that respectively record business activities, transactions, customer demographics, status, behaviors, interactions and communications with the enterprise, and the consumption and feedback of its products, services, production, marketing, operations, and management, etc. A critical challenge in enterprise data science is to enable an effective whole-of-enterprise data understanding and data-driven discovery and decision-making on all-round enterprise DNA. We introduce a neural encoder Table2Vec for automated universal representation learning of entities such as customers from all-round enterprise DNA with automated data characteristics analysis and data quality augmentation. The learned universal representations serve as representative and benchmarkable enterprise data genomes and can be used for enterprise-wide and domain-specific learning tasks. Table2Vec integrates automated universal representation learning on low-quality enterprise data and downstream learning tasks. We illustrate Table2Vec in characterizing all-round customer data DNA in an enterprise on complex heterogeneous multi-relational big tables to build universal customer vector representations. The learned universal representation of each customer is all-round, representative and benchmarkable to support both enterprise-wide and domain-specific learning goals and tasks in enterprise data science. Table2Vec significantly outperforms the existing shallow, boosting and deep learning methods typically used for enterprise analytics. We further discuss the research opportunities, directions and applications of automated universal enterprise representation and learning and the learned enterprise data DNA for automated, all-purpose, whole-of-enterprise and ethical machine learning and data science.
翻译:企业数据通常涉及多种不同的数据来源和外部数据,分别记录企业的商业活动、交易、客户人口、状况、状况、行为、与企业的互动和通信,以及企业产品、服务、生产、营销、业务和管理等的消费和反馈。 企业数据科学的一项关键挑战是,能够就全企业DNA进行有效的全企业数据了解和数据驱动的发现和决策。我们引入了神经编码器表2Vec,用于对企业等实体进行自动的通用代表学习,这些实体包括具有自动化数据特征分析和数据质量增强的全企业DNA客户。学习的通用代表制具有代表性和基准的企业数据基因组,可用于全企业和特定领域的学习任务。表2Vec整合了对低质量企业数据和下游学习任务的自动通用代表制学习。我们用表2Vc将全企业全客户数据DNA描述为复杂的多关系大表格,以建立通用客户矢量分析。每个客户的学习通用代表制是全企业、有代表性和基准的,可以全面支持企业通用和可基准的企业数据组,从而支持企业和特定领域典型的标准化的科学研究、典型数据应用和深度数据学习,并推进整个企业现有数据学习方法。