In this paper we consider the neural network optimization for DNN. We develop Anderson-type acceleration method for the stochastic gradient decent method and it improves the network permanence very much. We demonstrate the applicability of the method for DNN and CNN. We discuss the application of the general class of the neural network design for computer tomography and inverse medium problems.
翻译:本文针对深度神经网络(DNN)的优化问题展开研究。我们为随机梯度下降法开发了一种安德森型加速方法,该方法显著提升了网络性能。我们论证了该方法在DNN和卷积神经网络(CNN)中的适用性。此外,我们还探讨了此类广义神经网络设计在计算机断层扫描及反介质问题中的应用。