Since the Transformer architecture was introduced in 2017 there has been many attempts to bring the self-attention paradigm in the field of computer vision. In this paper we propose a novel self-attention module that can be easily integrated in virtually every convolutional neural network and that is specifically designed for computer vision, the LHC: Local (multi) Head Channel (self-attention). LHC is based on two main ideas: first, we think that in computer vision the best way to leverage the self-attention paradigm is the channel-wise application instead of the more explored spatial attention and that convolution will not be replaced by attention modules like recurrent networks were in NLP; second, a local approach has the potential to better overcome the limitations of convolution than global attention. With LHC-Net we managed to achieve a new state of the art in the famous FER2013 dataset with a significantly lower complexity and impact on the "host" architecture in terms of computational cost when compared with the previous SOTA.


翻译:自2017年引入变压器架构以来,人们多次尝试在计算机愿景领域引入自我关注模式。在本文件中,我们提出了一个新的自我关注模块,该模块可以很容易地融入几乎所有的进化神经网络,并专门为计算机愿景设计,即LHC:本地(多)主频道(自我关注 ) 。 LHC基于两个主要理念:首先,我们认为在计算机愿景中,利用自我关注模式的最佳方式是频道应用,而不是更多探索的空间关注,并且不会被关注模块取代,如NLP的经常性网络;其次,一种本地做法有可能更好地克服共振的局限性,而不是全球关注。 与前SOTA相比,我们设法在著名的FER2013数据集中实现了新的艺术状态,在计算成本方面,其复杂性和对“主机”结构的影响要大大降低。

0
下载
关闭预览

相关内容

ECCV 2020 五项大奖出炉!普林斯顿邓嘉获最佳论文奖
专知会员服务
17+阅读 · 2020年8月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
4+阅读 · 2020年3月27日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
Arxiv
27+阅读 · 2018年4月12日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Top
微信扫码咨询专知VIP会员