Wikipedia, the Web's largest encyclopedia, frequently faces content disputes or malicious users seeking to subvert its integrity. Administrators can mitigate such disruptions by enforcing "page protection" that selectively limits contributions to specific articles to help prevent the degradation of content. However, this practice contradicts one of Wikipedia's fundamental principles$-$that it is open to all contributors$-$and may hinder further improvement of the encyclopedia. In this paper, we examine the effect of page protection on article quality to better understand whether and when page protections are warranted. Using decade-long data on page protections from the English Wikipedia, we conduct a quasi-experimental study analyzing pages that received "requests for page protection"$-$written appeals submitted by Wikipedia editors to administrators to impose page protections. We match pages that indeed received page protection with similar pages that did not and quantify the causal effect of the interventions on a well-established measure of article quality. Our findings indicate that the effect of page protection on article quality depends on the characteristics of the page prior to the intervention: high-quality articles are affected positively as opposed to low-quality articles that are impacted negatively. Subsequent analysis suggests that high-quality articles degrade when left unprotected, whereas low-quality articles improve. Overall, with our study, we outline page protections on Wikipedia and inform best practices on whether and when to protect an article.


翻译:暂无翻译

0
下载
关闭预览

相关内容

维基百科( Wikipedia.org)是一个基于 Wiki 技术的全球性多语言百科全书协作项目,同时也是一部在网际网络上呈现的网络百科全书网站,其目标及宗旨是为全人类提供自由的百科全书。目前 Alexa 全球网站排名第六。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员