Existing traffic engineering (TE) solutions performs well for software defined network (SDN) in average cases. However, during peak hours, bursty traffic spikes are challenging to handle, because it is difficult to react in time and guarantee high performance even after failures with limited flow entries. Instead of leaving some capacity empty to guarantee no congestion happens due to traffic rerouting after failures or path updating after demand or topology changes, we decide to make full use of the network capacity to satisfy the demands for heavily-loaded peak hours. The TE system also needs to react to failures quickly and utilize the priority queue to guarantee the transmission of loss and delay sensitive traffic. We propose TED, a scalable TE system that can guarantee high throughput in peak hours. TED can quickly compute a group of maximum number of edge-disjoint paths for each ingress-egress switch pair. We design two methods to select paths under the flow entry limit. We then input the selected paths to our TE to minimize the maximum link utilization. In case of large traffic matrix making the maximum link utilization larger than 1, we input the utilization and the traffic matrix to the optimization of maximizing overall throughput under a new constrain. Thus we obtain a realistic traffic matrix, which has the maximum overall throughput and guarantees no traffic starvation for each switch pair. Experiments show that TED has much better performance for heavily-loaded SDN and has 10% higher probability to satisfy all (> 99.99%) the traffic after a single link failure for G-Scale topology than Smore under the same flow entry limit.


翻译:现有交通工程(TE)解决方案在平均情况下对软件定义的网络(SDN)运作良好。然而,在高峰时段,突发交通高峰期很难处理,因为即使在流量限制的输入出现故障后,也很难及时反应,保证高性能。有些容量是空的,以保证在需求或地形变化后,交通在出现故障或路径更新后不会发生堵塞。我们决定充分利用网络能力,以满足重载高峰时数的需求。TE系统还需要对故障迅速作出反应,并利用优先排队来保证损失的传播和延迟敏感交通。我们建议TE,一个可缩放的TE系统,保证在高峰时段内完成高量的输送。TED可以迅速为每个逆向偏向偏向开关配一组最大偏差路径。我们设计了两种在流量限制下选择路径的方法。我们然后将选中的路径输入到我们的TE,以尽量减少最大程度的连接利用率。如果大型交通总连通量大于1,我们就会输入利用率和交通总排队列。我们建议TED,一个可缩的可缩缩缩缩的TETF,这样可以迅速计算出一条最大程度的磁度。我们获得了10次的磁度,在SDDDD的磁度下,在10度下可以实现最深的磁度。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员