The event sequence of many diverse systems is represented as a sequence of discrete events in a continuous space. Examples of such an event sequence are earthquake aftershock events, financial transactions, e-commerce transactions, social network activity of a user, and the user's web search pattern. Finding such an intricate pattern helps discover which event will occur in the future and when it will occur. A Hawkes process is a mathematical tool used for modeling such time series discrete events. Traditionally, the Hawkes process uses a critical component for modeling data as an intensity function with a parameterized kernel function. The Hawkes process's intensity function involves two components: the background intensity and the effect of events' history. However, such parameterized assumption can not capture future event characteristics using past events data precisely due to bias in modeling kernel function. This paper explores the recent advancement using novel deep learning-based methods to model kernel function to remove such parametrized kernel function. In the end, we will give potential future research directions to improve modeling using the Hawkes process.
翻译:许多不同系统的事件序列在连续空间中作为连续空间的离散事件序列代表。这种事件序列的例子有地震余震事件、金融交易、电子商务交易、用户的社会网络活动以及用户的网络搜索模式。 找到这样一个复杂的模式有助于发现未来和何时会发生何种事件。 霍克斯进程是一个数学工具, 用于模拟这种时间序列离散事件。 传统上, 霍克斯进程使用一个关键组成部分来模拟数据, 作为具有参数化内核功能的强度函数。 霍克斯进程强度功能包含两个组成部分: 背景强度和事件历史的影响。 然而, 这种参数化假设无法利用过去事件的数据捕捉未来事件特征, 其原因正是在模拟内核功能时存在偏差。 本文探讨了最近的进展, 使用基于深层次学习的新方法模拟内核功能, 以去除这种离子化内核功能。 最后, 我们将给未来提供潜在的研究方向, 以便利用霍克斯进程改进建模。