The event sequence of many diverse systems is represented as a sequence of discrete events in a continuous space. Examples of such an event sequence are earthquake aftershock events, financial transactions, e-commerce transactions, social network activity of a user, and the user's web search pattern. Finding such an intricate pattern helps discover which event will occur in the future and when it will occur. A Hawkes process is a mathematical tool used for modeling such time series discrete events. Traditionally, the Hawkes process uses a critical component for modeling data as an intensity function with a parameterized kernel function. The Hawkes process's intensity function involves two components: the background intensity and the effect of events' history. However, such parameterized assumption can not capture future event characteristics using past events data precisely due to bias in modeling kernel function. This paper explores the recent advancement using novel deep learning-based methods to model kernel function to remove such parametrized kernel function. In the end, we will give potential future research directions to improve modeling using the Hawkes process.


翻译:许多不同系统的事件序列在连续空间中作为连续空间的离散事件序列代表。这种事件序列的例子有地震余震事件、金融交易、电子商务交易、用户的社会网络活动以及用户的网络搜索模式。 找到这样一个复杂的模式有助于发现未来和何时会发生何种事件。 霍克斯进程是一个数学工具, 用于模拟这种时间序列离散事件。 传统上, 霍克斯进程使用一个关键组成部分来模拟数据, 作为具有参数化内核功能的强度函数。 霍克斯进程强度功能包含两个组成部分: 背景强度和事件历史的影响。 然而, 这种参数化假设无法利用过去事件的数据捕捉未来事件特征, 其原因正是在模拟内核功能时存在偏差。 本文探讨了最近的进展, 使用基于深层次学习的新方法模拟内核功能, 以去除这种离子化内核功能。 最后, 我们将给未来提供潜在的研究方向, 以便利用霍克斯进程改进建模。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月11日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关VIP内容
相关资讯
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员