Homomorphic permutation is fundamental to privacy-preserving computations based on batch-encoding homomorphic encryption. It underpins nearly all homomorphic matrix operations and predominantly influences their complexity. Permutation decomposition as a potential approach to optimize this critical component remains underexplored. In this paper, we propose novel decomposition techniques to optimize homomorphic permutations, advancing homomorphic encryption-based privacy-preserving computations. We start by defining an ideal decomposition form for permutations and propose an algorithm searching for depth-1 ideal decompositions. Based on this, we prove the full-depth ideal decomposability of permutations used in specific homomorphic matrix transposition (HMT) and multiplication (HMM) algorithms, allowing them to achieve asymptotic improvement in speed and rotation key reduction. As a demonstration of applicability, substituting the HMM components in the best-known inference framework of encrypted neural networks with our enhanced version shows up to $3.9\times$ reduction in latency. We further devise a new method for computing arbitrary homomorphic permutations, specifically those with weak structures that cannot be ideally decomposed. We design a network structure that deviates from the conventional scope of decomposition and outperforms the state-of-the-art technique with a speed-up of up to $1.69\times$ under a minimal rotation key requirement.


翻译:同态置换是基于批编码同态加密的隐私保护计算的基础。它支撑着几乎所有同态矩阵运算,并主要影响其复杂度。置换分解作为优化这一关键组件的潜在方法,目前仍未得到充分探索。本文提出了新颖的分解技术来优化同态置换,从而推进基于同态加密的隐私保护计算。我们首先定义了置换的理想分解形式,并提出了一种搜索深度为1的理想分解的算法。在此基础上,我们证明了特定同态矩阵转置(HMT)和乘法(HMM)算法中所用置换的完全深度理想可分解性,使其在速度和旋转密钥减少方面实现渐进性改进。作为适用性演示,将最先进的加密神经网络推理框架中的HMM组件替换为我们增强的版本,延迟最多可降低$3.9\times$。我们进一步设计了一种计算任意同态置换的新方法,特别是针对那些结构较弱、无法理想分解的置换。我们设计了一种偏离传统分解范围的网络结构,在最小旋转密钥要求下,性能优于现有技术,加速比最高可达$1.69\times$。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2024年4月16日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员