In this work, we demonstrate three ultra-compact integrated-photonics devices, which are designed via a machine-learning algorithm coupled with finite-difference time-domain (FDTD) modeling. Through digitizing the design domain into "binary pixels" these digital metamaterials are readily manufacturable as well. By showing a variety of devices (beamsplitters and waveguide bends), we showcase the generality of our approach. With an area footprint smaller than ${\lambda_0}^2$, our designs are amongst the smallest reported to-date. Our method combines machine learning with digital metamaterials to enable ultra-compact, manufacturable devices, which could power a new "Photonics Moore's Law."
翻译:在这项工作中,我们展示了三种超标准集成光学装置,这些装置是通过机器学习算法以及有限差异时间-域(FDTD)模型设计的。通过将设计域数字化为“二进制像素 ”, 这些数字元材料也很容易制造。 通过展示各种装置(光素和波向弯曲),我们展示了我们方法的一般性。以一个小于$_lambda_0 ⁇ 2美元的区域足迹,我们的设计是迄今报告的最小的。我们的方法将机器学习与数字元材料结合起来,使超集成、可制造的装置成为新的“光学摩尔法”的动力。