Modeling long texts has been an essential technique in the field of natural language processing (NLP). With the ever-growing number of long documents, it is important to develop effective modeling methods that can process and analyze such texts. However, long texts pose important research challenges for existing text models, with more complex semantics and special characteristics. In this paper, we provide an overview of the recent advances on long texts modeling based on Transformer models. Firstly, we introduce the formal definition of long text modeling. Then, as the core content, we discuss how to process long input to satisfy the length limitation and design improved Transformer architectures to effectively extend the maximum context length. Following this, we discuss how to adapt Transformer models to capture the special characteristics of long texts. Finally, we describe four typical applications involving long text modeling and conclude this paper with a discussion of future directions. Our survey intends to provide researchers with a synthesis and pointer to related work on long text modeling.


翻译:长篇案文是自然语言处理领域的一项基本技术。随着长篇文件越来越多,必须制定能够处理和分析长篇文件的有效示范方法。不过,长篇案文对现有文本模型提出了重要的研究挑战,这些模型具有更为复杂的语义和特殊性。在本文件中,我们概述了以变形模型为基础的长篇案文模型的最新进展。首先,我们引入长篇案文模型的正式定义。然后,作为核心内容,我们讨论如何处理长篇投入,以满足长度限制,并设计经改进的变换器结构,以有效延长最长的篇幅。随后,我们讨论如何调整变换器模型,以捕捉长篇案文的特殊性。最后,我们描述了涉及长篇案文模型的四种典型应用,并在结束本文件时讨论今后的方向。我们的调查旨在为研究人员提供有关长篇案文模型的相关工作提供综合和指针。</s>

5
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
Arxiv
69+阅读 · 2022年6月13日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
39+阅读 · 2021年11月11日
A Survey on Data Augmentation for Text Classification
Arxiv
103+阅读 · 2021年6月8日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
15+阅读 · 2019年6月25日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
Arxiv
69+阅读 · 2022年6月13日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
39+阅读 · 2021年11月11日
A Survey on Data Augmentation for Text Classification
Arxiv
103+阅读 · 2021年6月8日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
15+阅读 · 2019年6月25日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员