Gait recognition is widely used in diversified practical applications. Currently, the most prevalent approach is to recognize human gait from RGB images, owing to the progress of computer vision technologies. Nevertheless, the perception capability of RGB cameras deteriorates in rough circumstances, and visual surveillance may cause privacy invasion. Due to the robustness and non-invasive feature of millimeter wave (mmWave) radar, radar-based gait recognition has attracted increasing attention in recent years. In this research, we propose a Hierarchical Dynamic Network (HDNet) for gait recognition using mmWave radar. In order to explore more dynamic information, we propose point flow as a novel point clouds descriptor. We also devise a dynamic frame sampling module to promote the efficiency of computation without deteriorating performance noticeably. To prove the superiority of our methods, we perform extensive experiments on two public mmWave radar-based gait recognition datasets, and the results demonstrate that our model is superior to existing state-of-the-art methods.
翻译:由于计算机视觉技术的进步,目前最普遍的做法是从 RGB 图像中识别人的行踪。然而,RGB 相机的感知能力在粗糙的情况下恶化,视觉监视可能导致隐私侵入。由于毫米波雷达(mmWave)的坚固性和非侵入性特征,雷达的行踪识别近年来日益引起注意。在这项研究中,我们提议建立一个等级动态网络(HDNet),用于使用毫米Wave雷达进行行踪识别。为了探索更动态的信息,我们建议点流作为新颖的点云标注符。我们还设计了一个动态框架取样模块,以提高计算效率,而不会明显地降低性能。为了证明我们方法的优越性,我们对两个以公毫米Wave 雷达为基础的视网识别数据集进行了广泛的实验,结果显示我们的模型优于现有的状态方法。