Recent work has constructed neural networks that are equivariant to continuous symmetry groups such as 2D and 3D rotations. This is accomplished using explicit Lie group representations to derive the equivariant kernels and nonlinearities. We present three contributions motivated by frontier applications of equivariance beyond rotations and translations. First, we relax the requirement for explicit Lie group representations with a novel algorithm that finds representations of arbitrary Lie groups given only the structure constants of the associated Lie algebra. Second, we provide a self-contained method and software for building Lie group-equivariant neural networks using these representations. Third, we contribute a novel benchmark dataset for classifying objects from relativistic point clouds, and apply our methods to construct the first object-tracking model equivariant to the Poincar\'e group.
翻译:最近的工作建造了神经网络,这些神经网络与连续对称组如 2D 和 3D 旋转等的对称组等同。 完成这项工作时使用了明确的 Lie 组表示法, 以得出等同内核和非线性。 我们展示了三种贡献, 其动机是边界应用的异差, 而不是轮换和翻译。 首先, 我们放松了对明确的 Lie 组表示法的要求, 使用一种新奇的算法, 只根据相联的 Lie 代数的结构常数来找到任意的 Lie 组的表示法。 其次, 我们提供了一种自足的方法和软件, 用于利用这些表示法构建 Lie 组- 等异性神经网络 。 第三, 我们贡献了一个新的基准数据集, 用于将物体从相对点云进行分类, 并使用我们的方法构建第一个对象跟踪模型 等同波因卡尔 组 。