Deep learning based weather forecasting (DLWF) models leverage past weather observations to generate future forecasts, supporting a wide range of downstream tasks, including tropical cyclone (TC) trajectory prediction. In this paper, we investigate their vulnerability to adversarial attacks, where subtle perturbations to the upstream weather forecasts can alter the downstream TC trajectory predictions. Although research on adversarial attacks in DLWF models has grown recently, generating perturbed upstream forecasts that reliably steer downstream output toward attacker-specified trajectories remains a challenge. First, conventional TC detection systems are opaque, non-differentiable black boxes, making standard gradient-based attacks infeasible. Second, the extreme rarity of TC events leads to severe class imbalance problem, making it difficult to develop efficient attack methods that will produce the attacker's target trajectories. Furthermore, maintaining physical consistency in adversarially generated forecasts presents another significant challenge. To overcome these limitations, we propose Cyc-Attack, a novel method that perturbs the upstream forecasts of DLWF models to generate adversarial trajectories. First, we pre-train a differentiable surrogate model to approximate the TC detector's output, enabling the construction of gradient-based attacks. Cyc-Attack also employs skewness-aware loss function with kernel dilation strategy to address the imbalance problem. Finally, a distance-based gradient weighting scheme and regularization are used to constrain the perturbations and eliminate spurious trajectories to ensure the adversarial forecasts are realistic and not easily detectable.
翻译:暂无翻译