Recently, linear regression models, such as EASE and SLIM, have shown to often produce rather competitive results against more sophisticated deep learning models. On the other side, the (weighted) matrix factorization approaches have been popular choices for recommendation in the past and widely adopted in the industry. In this work, we aim to theoretically understand the relationship between these two approaches, which are the cornerstones of model-based recommendations. Through the derivation and analysis of the closed-form solutions for two basic regression and matrix factorization approaches, we found these two approaches are indeed inherently related but also diverge in how they "scale-down" the singular values of the original user-item interaction matrix. This analysis also helps resolve the questions related to the regularization parameter range and model complexities. We further introduce a new learning algorithm in searching (hyper)parameters for the closed-form solution and utilize it to discover the nearby models of the existing solutions. The experimental results demonstrate that the basic models and their closed-form solutions are indeed quite competitive against the state-of-the-art models, thus, confirming the validity of studying the basic models. The effectiveness of exploring the nearby models are also experimentally validated.


翻译:最近,EASE和SLIM等线性回归模型显示,与更先进的深层次学习模型相比,通常会产生相当竞争性的结果。另一方面,(加权)矩阵乘数化法在过去是普遍选择的建议,在行业中被广泛采用。在这项工作中,我们的目标是从理论上理解这两种方法之间的关系,它们是基于模型的建议的基石。通过对两种基本回归和矩阵乘数化方法的封闭式解决方案的衍生和分析,我们发现这两种方法确实具有内在的内在关联性,但在它们如何“缩小”原始用户-项目互动矩阵的单值方面也有差异。这一分析也有助于解决与正规化参数范围和模型复杂性有关的问题。我们进一步引入了一种新的学习算法,以寻找封闭式解决方案的(节能)参数,并利用它来发现现有解决方案的临近模型模型。实验结果表明,基本模型及其封闭式解决方案确实与最新模型具有相当的竞争力,从而证实了研究基本模型的有效性。探索附近模型的有效性也是实验性的。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
61+阅读 · 2021年6月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:BERT原理和应用的图文教程
LibRec智能推荐
5+阅读 · 2018年12月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
3+阅读 · 2020年2月12日
Arxiv
8+阅读 · 2018年2月23日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:BERT原理和应用的图文教程
LibRec智能推荐
5+阅读 · 2018年12月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员