We examine the categorical structure of the Grothendieck construction $\Sigma_{\mathsf{C}}\mathsf{L}$ of an indexed category $\mathsf{L} \colon \mathsf{C}^{op} \to \mathsf{CAT}$. Our analysis begins with characterisations of fibred limits, colimits, and monoidal (closed) structures. The study of fibred colimits leads naturally to a generalisation of the notion of extensive indexed category introduced in CHAD for Expressive Total Languages, and gives rise to the concept of left Kan extensivity, which provides a uniform framework for computing colimits in Grothendieck constructions. We then establish sufficient conditions for the (non-fibred) monoidal closure of the total category $\Sigma_{\mathsf{C}}\mathsf{L}$. This extends G\"odel's Dialectica interpretation and rests upon a new notion of $\Sigma$-tractable monoidal structure. Under this notion, $\Sigma$-tractable coproducts unify and extend cocartesian coclosed structures, biproducts, and extensive coproducts. Finally, we consider when the induced closed structure is fibred, showing that this need not hold in general, even in the presence of a fibred monoidal structure.
翻译:本文考察索引范畴 $\mathsf{L} \colon \mathsf{C}^{op} \to \mathsf{CAT}$ 的Grothendieck构造 $\Sigma_{\mathsf{C}}\mathsf{L}$ 的范畴结构。我们的分析始于对纤维化极限、余极限及幺半(闭)结构的刻画。对纤维化余极限的研究自然地导向了CHAD(用于表达性全语言)中引入的广延索引范畴概念的推广,并引出了左Kan广延性的概念,这为计算Grothendieck构造中的余极限提供了一个统一框架。随后,我们建立了全范畴 $\Sigma_{\mathsf{C}}\mathsf{L}$ 具有(非纤维化)幺半闭结构的充分条件。这一结果扩展了哥德尔的Dialectica解释,并基于一种新的Σ-可处理幺半结构概念。在此概念下,Σ-可处理余积统一并扩展了余笛卡尔余闭结构、双积以及广延余积。最后,我们探讨了诱导的闭结构何时是纤维化的,并证明即使在存在纤维化幺半结构的情况下,这一性质在一般情况下也未必成立。