In data-sparse regions, satellite and reanalysis rainfall estimates (SREs) are vital but limited by inherent biases. This study evaluates bias correction (BC) methods, including traditional statistical (LOCI, QM) and machine learning (SVR, GPR), applied to seven SREs across 38 stations in Ghana and Zambia. We introduce a constrained LOCI method to prevent the unrealistically high rainfall values produced by the original approach. Results indicate that statistical methods generally outperformed machine learning, though QM tended to inflate rainfall. Corrected SREs showed high capability in detecting dry days (POD $\ge$ 0.80). The ENACTS product, which integrates numerous station records, was the most amenable to correction in Zambia; most BC methods reduced mean error at >70% of stations. However, ENACTS performed less reliably at an independent station (Moorings), highlighting the need for broader validation at locations not incorporated into the product. Crucially, even after correction, most SREs (except ENACTS) failed to improve the detection of heavy and violent rainfall (POD $\le$ 0.2). This limits their utility for flood risk assessment and highlights a vital research gap regarding extreme event estimation.


翻译:在数据稀缺地区,卫星与再分析降雨估算(SREs)至关重要,但其应用受限于固有偏差。本研究评估了偏差校正(BC)方法,包括传统统计方法(LOCI、QM)与机器学习方法(SVR、GPR),并将其应用于加纳和赞比亚38个站点的七种SREs。我们引入了一种约束LOCI方法,以防止原始方法产生不切实际的高降雨值。结果表明,统计方法总体优于机器学习方法,但QM方法倾向于放大降雨量。校正后的SREs在检测干旱日方面表现出较高能力(POD $\ge$ 0.80)。ENACTS产品整合了大量站点记录,在赞比亚最易于校正;大多数BC方法在超过70%的站点上降低了平均误差。然而,ENACTS在一个独立站点(Moorings)的表现可靠性较低,突显了在未纳入该产品的地点进行更广泛验证的必要性。关键的是,即使经过校正,大多数SREs(除ENACTS外)在检测强降雨和极端暴雨方面仍未改善(POD $\le$ 0.2)。这限制了它们在洪水风险评估中的实用性,并凸显了极端事件估算方面的重要研究空白。

0
下载
关闭预览

相关内容

【ICML2024】多元化对齐路线图
专知会员服务
22+阅读 · 2024年5月2日
金融领域大型语言模型综述(FinLLMs)
专知会员服务
71+阅读 · 2024年2月6日
【ICML2023】无消息传递的transformer图归纳偏差
专知会员服务
26+阅读 · 2023年6月1日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
深度学习目标检测概览
AI研习社
46+阅读 · 2017年10月13日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
深度学习目标检测概览
AI研习社
46+阅读 · 2017年10月13日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员