Standard approaches to causal inference, such as Outcome Regression and Inverse Probability Weighted Regression Adjustment (IPWRA), are typically derived through the lens of missing data imputation and identification theory. In this work, we unify these methods from a Machine Learning perspective, reframing ATE estimation as a \textit{domain adaptation problem under distribution shift}. We demonstrate that the canonical Hajek estimator is a special case of IPWRA restricted to a constant hypothesis class, and that IPWRA itself is fundamentally Importance-Weighted Empirical Risk Minimization designed to correct for the covariate shift between the treated sub-population and the target population. Leveraging this unified framework, we critically examine the optimization objectives of Doubly Robust estimators. We argue that standard methods enforce \textit{sufficient but not necessary} conditions for consistency by requiring outcome models to be individually unbiased. We define the true "ATE Risk Function" and show that minimizing it requires only that the biases of the treated and control models structurally cancel out. Exploiting this insight, we propose the \textbf{Joint Robust Estimator (JRE)}. Instead of treating propensity estimation and outcome modeling as independent stages, JRE utilizes bootstrap-based uncertainty quantification of the propensity score to train outcome models jointly. By optimizing for the expected ATE risk over the distribution of propensity scores, JRE leverages model degrees of freedom to achieve robustness against propensity misspecification. Simulation studies demonstrate that JRE achieves up to a 15\% reduction in MSE compared to standard IPWRA in finite-sample regimes with misspecified outcome models.
翻译:标准的因果推断方法,如结果回归和逆概率加权回归调整(IPWRA),通常是从缺失数据插补和识别理论的角度推导的。在本工作中,我们从机器学习的视角统一这些方法,将平均处理效应(ATE)估计重新定义为**分布偏移下的领域适应问题**。我们证明经典的Hajek估计量是IPWRA限制在常数假设类中的一个特例,而IPWRA本身本质上是重要性加权经验风险最小化,旨在校正处理子群体与目标群体之间的协变量偏移。利用这一统一框架,我们批判性地审视了双重稳健估计量的优化目标。我们认为,标准方法通过要求结果模型各自无偏,施加了**充分但非必要**的一致性条件。我们定义了真实的“ATE风险函数”,并证明最小化该函数仅要求处理组模型和对照组模型的偏差在结构上相互抵消。基于这一洞见,我们提出了**联合稳健估计量(JRE)**。JRE不再将倾向得分估计和结果建模视为独立阶段,而是利用基于自助法的倾向得分不确定性量化来联合训练结果模型。通过优化倾向得分分布上的期望ATE风险,JRE利用模型的自由度来实现对倾向得分误设的稳健性。模拟研究表明,在结果模型存在误设的有限样本场景下,与标准IPWRA相比,JRE的均方误差(MSE)降低高达15%。