Panoptic Segmentation aims to provide an understanding of background (stuff) and instances of objects (things) at a pixel level. It combines the separate tasks of semantic segmentation (pixel level classification) and instance segmentation to build a single unified scene understanding task. Typically, panoptic segmentation is derived by combining semantic and instance segmentation tasks that are learned separately or jointly (multi-task networks). In general, instance segmentation networks are built by adding a foreground mask estimation layer on top of object detectors or using instance clustering methods that assign a pixel to an instance center. In this work, we present a fully convolution neural network that learns instance segmentation from semantic segmentation and instance contours (boundaries of things). Instance contours along with semantic segmentation yield a boundary aware semantic segmentation of things. Connected component labeling on these results produces instance segmentation. We merge semantic and instance segmentation results to output panoptic segmentation. We evaluate our proposed method on the CityScapes dataset to demonstrate qualitative and quantitative performances along with several ablation studies. Our overview video can be accessed from url:https://youtu.be/wBtcxRhG3e0.
翻译:泛光分解的目的是在像素水平上了解对象的背景( 外观) 和实例( 外观) 实例( 外观) 。 它将语义分解( 像素级分类) 和 实例分解的不同任务结合起来, 以构建单一统一的场景理解任务 。 一般来说, 光观分解是通过将单独或共同( 多任务网络) 所学的语义和实例分解任务结合起来而产生的 。 一般来说, 外观分解网络是通过在对象探测器顶部添加一个地表面遮罩估计层, 或使用向实例中心指派像素的例分组方法来建立 。 在这项工作中, 我们展示一个完全的共动神经分解( 像素级分类) 和 实例分解( 事物的边框) 。 旁观与语义分解相结合, 产生边界感知的语义分解部分。 我们将语义和实例分解结果与输出光谱分解结果合并。 我们评估了在城市- 区划数据集上的拟议方法, 以显示定性和定量的状态分析: 我们的图像3 以及若干视频分析。 。 可访问。