Multifidelity methods are widely used for estimating quantities of interest (QoIs) in computational science by employing numerical simulations of differing costs and accuracies. Many methods approximate numerical-valued statistics that represent only limited information about the QoIs. In this paper, we generalize the ideas in \cite{xu2021bandit} to develop a multifidelity method that approximates the full distribution of scalar-valued QoIs. The main advantage of our approach compared to alternative methods is that we require no particular relationships among the high and lower-fidelity models (e.g. model hierarchy), and we do not assume any knowledge of model statistics including correlations and other cross-model statistics before the procedure starts. Under suitable assumptions in the framework above, we achieve provable 1-Wasserstein metric convergence of an algorithmically constructed distributional emulator via an exploration-exploitation strategy. We also prove that crucial policy actions taken by our algorithm are budget-asymptotically optimal. Numerical experiments are provided to support our theoretical analysis.
翻译:在计算科学中,利用不同成本和理解的数值模拟,广泛使用多种纤维方法来估计对计算科学的兴趣(QoIs)数量。许多方法大致是数字价值统计,仅代表有关QoIs的有限信息。在本文中,我们以\cite{xu2021bandit} 的形式概括了这些想法,以开发一种多种纤维方法,该方法与标价的Qois的全面分布相近。与替代方法相比,我们的方法的主要优势是,我们不需要高和低纤维模型(例如模型等级)之间有特殊的关系,而且我们并不假定在程序开始前对模型统计,包括相关性和其他跨模型统计有任何了解。根据上述框架的适当假设,我们通过勘探开发战略实现逻辑构建的分布模拟器的可辨识的1-Wasserstein指标趋同。我们还证明,我们的算法所采取的关键政策行动在预算上是最佳的。提供了数量实验,以支持我们的理论分析。