A remarkable characteristic of overparameterized deep neural networks (DNNs) is that their accuracy does not degrade when the network's width is increased. Recent evidence suggests that developing compressible representations is key for adjusting the complexity of large networks to the learning task at hand. However, these compressible representations are poorly understood. A promising strand of research inspired from biology is understanding representations at the unit level as it offers a more granular and intuitive interpretation of the neural mechanisms. In order to better understand what facilitates increases in width without decreases in accuracy, we ask: Are there mechanisms at the unit level by which networks control their effective complexity as their width is increased? If so, how do these depend on the architecture, dataset, and training parameters? We identify two distinct types of "frivolous" units that proliferate when the network's width is increased: prunable units which can be dropped out of the network without significant change to the output and redundant units whose activities can be expressed as a linear combination of others. These units imply complexity constraints as the function the network represents could be expressed by a network without them. We also identify how the development of these units can be influenced by architecture and a number of training factors. Together, these results help to explain why the accuracy of DNNs does not degrade when width is increased and highlight the importance of frivolous units toward understanding implicit regularization in DNNs.


翻译:过度量化的深神经网络(DNNs)的一个显著特点是,当网络宽度增加时,其准确性不会降低,因为网络宽度增加时,网络的准确性不会降低。最近的证据显示,发展压缩的表述方式对于调整大型网络的复杂性以适应手头的学习任务至关重要。然而,这些压缩的表述方式却不甚为人理解。生物学激发的令人充满希望的研究内容是理解单位一级的表述方式,因为它对神经机制的输出和冗余部分没有显著的改变,因此,可以将神经机制从网络上删除。为了更好地了解什么可以促进宽度的增加,而不会降低准确性,我们问:在单位一级是否有机制使网络控制其有效复杂性,因为网络的宽度增加?如果有,这些压缩的表述方式如何取决于结构、数据集和培训参数?然而,这些压缩的表述方式是调整式表述方式的关键。我们还要指出,当网络没有显示网络能显示其功能的复杂程度时,在网络上如何控制其有效复杂性?当网络的网络能影响常规性时,如何使数据库的准确性得到更高的程度,我们还要解释这些稳定的结构如何影响。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年11月8日
Momentum Residual Neural Networks
Arxiv
0+阅读 · 2021年7月22日
Arxiv
6+阅读 · 2019年9月25日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年11月8日
Top
微信扫码咨询专知VIP会员