We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems, two from the theory of matroids and the third from graph theory. The input to the Weighted Diverse Bases problem consists of a matroid $M$, a weight function $\omega:E(M)\to\mathbb{N}$, and integers $k\geq 1, d\geq 0$. The task is to decide if there is a collection of $k$ bases $B_{1}, \dotsc, B_{k}$ of $M$ such that the weight of the symmetric difference of any pair of these bases is at least $d$. This is a diverse variant of the classical matroid base packing problem. The input to the Weighted Diverse Common Independent Sets problem consists of two matroids $M_{1},M_{2}$ defined on the same ground set $E$, a weight function $\omega:E\to\mathbb{N}$, and integers $k\geq 1, d\geq 0$. The task is to decide if there is a collection of $k$ common independent sets $I_{1}, \dotsc, I_{k}$ of $M_{1}$ and $M_{2}$ such that the weight of the symmetric difference of any pair of these sets is at least $d$. This is motivated by the classical weighted matroid intersection problem. The input to the Diverse Perfect Matchings problem consists of a graph $G$ and integers $k\geq 1, d\geq 0$. The task is to decide if $G$ contains $k$ perfect matchings $M_{1},\dotsc,M_{k}$ such that the symmetric difference of any two of these matchings is at least $d$. We show that Weighted Diverse Bases and Weighted Diverse Common Independent Sets are both NP-hard, and derive fixed-parameter tractable (FPT) algorithms for all three problems with $(k,d)$ as the parameter.
翻译:我们调查了为三个基本的组合问题寻找多种解决方案的参数复杂性, 其中两个来自类固醇理论, 第三个来自图形理论。 给 Weight 不同的基点问题的投入包括一个机器人$M$, 一个重量函数 $omga: E( M)\to\ mathb{N} 美元, 和整数 $kqqqq 1, d\geq 0美元。 任务在于决定是否收集美元基数( $美元), 美元基数( 美元) 的重量函数 $2, 美元, 美元基数( 美元), 美元基数( 美元) 的比值( 美元) 。 美元基数( 美元) 的比值( 美元) 。 美元比值( 美元) 的比值( 美元) 的比值( 美元) 。 美元比值( 美元) 的比值( 美元) 的比值( 美元) 和美元比值( 美元) 美元比值( 美元) 的比值( 美元) 的比值( 美元) 。