The rapid adoption of Internet of Things (IoT) devices in healthcare has introduced new challenges in preserving data privacy, security and patient safety. Traditional approaches need to ensure security and privacy while maintaining computational efficiency, particularly for resource-constrained IoT devices. This paper proposes a novel hybrid approach combining federated learning and blockchain technology to provide a secure and privacy-preserved solution for IoT-enabled healthcare applications. Our approach leverages a public-key cryptosystem that provides semantic security for local model updates, while blockchain technology ensures the integrity of these updates and enforces access control and accountability. The federated learning process enables a secure model aggregation without sharing sensitive patient data. We implement and evaluate our proposed framework using EMNIST datasets, demonstrating its effectiveness in preserving data privacy and security while maintaining computational efficiency. The results suggest that our hybrid approach can significantly enhance the development of secure and privacy-preserved IoT-enabled healthcare applications, offering a promising direction for future research in this field.
翻译:物联网设备在医疗保健领域的快速采用引入了在保护数据隐私、安全和患者安全方面的新挑战。传统方法需要确保安全和隐私,同时保持计算效率,特别是对于资源受限的物联网设备。本文提出一种新颖的混合方法,结合联邦学习和区块链技术,为物联网医疗保健应用提供安全和保护隐私的解决方案。我们的方法利用公钥加密系统,为本地模型更新提供语义安全性,而区块链技术确保这些更新的完整性并强制进行访问控制和问责制。联邦学习过程实现了安全的模型聚合,而不共享敏感的患者数据。我们使用EMNIST数据集实现和评估我们提出的框架,显示其在保护数据隐私和安全方面的有效性,同时保持计算效率。结果表明,我们的混合方法可以显着增强安全和保护隐私的物联网医疗保健应用程序的开发,为未来的研究方向提供了一个有希望的方向。