Category theory is famous for its innovative way of thinking of concepts by their descriptions, in particular by establishing universal properties. Concepts that can be characterized in a universal way receive a certain quality seal, which makes them easily transferable across application domains. The notion of partiality is however notoriously difficult to characterize in this way, although the importance of it is certain, especially for computer science where entire research areas, such as synthetic and axiomatic domain theory revolve around notions of partiality. More recently, this issue resurfaced in the context of (constructive) intensional type theory. Here, we provide a generic categorical iteration-based notion of partiality, which is arguably the most basic one. We show that the emerging free structures, which we dub uniform-iteration algebras enjoy various desirable properties, in particular, yield an equational lifting monad. We then study the impact of classicality assumptions and choice principles on this monad, in particular, we establish a suitable categorial formulation of the axiom of countable choice entailing that the monad is an Elgot monad.


翻译:分类理论以其描述概念的创新思维方式而闻名,特别是建立普遍特性。以普遍方式描述的概念得到某种质量封条,使得它们容易在应用领域之间转移。偏向的概念尽管其重要性是肯定的,但很难以这种方式描述,特别是对于计算机科学来说,它的重要性是众所周知的,在这方面,整个研究领域,例如合成和非氧领域理论围绕偏向概念。最近,这个问题在(建设性)强化理论的背景下重新出现。在这里,我们提供了一种基于偏向的通用绝对重复概念,可以说是最基本的概念。我们展示了正在形成的自由结构,我们用这种结构来进行统一比喻代数代数代数代数的代数具有各种可取的特性,特别是产生一个等式提升元体。我们接着研究传统假设和选择原则对这个元体的影响,特别是,我们建立了一种适当的可计算选择的分解公式,它意味着月球是一个埃戈特月球。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月6日
Arxiv
0+阅读 · 2021年9月5日
Arxiv
0+阅读 · 2021年9月3日
Arxiv
49+阅读 · 2021年5月9日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员