The sparse difference resultant introduced in \citep{gao-2015} is a basic concept in difference elimination theory. In this paper, we show that the sparse difference resultant of a generic Laurent transformally essential system can be computed via the sparse resultant of a simple algebraic system arising from the difference system. Moreover, new order bounds of sparse difference resultant are found. Then we propose an efficient algorithm to compute sparse difference resultant which is the quotient of two determinants whose elements are the coefficients of the polynomials in the algebraic system. The complexity of the algorithm is analyzed and experimental results show the efficiency of the algorithm.


翻译:在 \ citep{gao-2015} 中引入的微小差异结果,是消除差异理论中的一个基本概念。 在本文中, 我们显示, 通用的Laurent 变形基本系统产生的微小差异, 可以通过差异系统产生的简单代数系统产生的微小结果来计算。 此外, 也发现了微小差异结果的新顺序界限。 然后我们建议一种有效的算法, 来计算稀小差异结果, 也就是两个决定因素的商数, 其要素是代数系统中多义数系数。 算法的复杂性得到分析, 实验结果显示算法的效率 。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
314+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
An Optimal Algorithm for Strict Circular Seriation
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2021年6月6日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
314+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员