The sparse difference resultant introduced in \citep{gao-2015} is a basic concept in difference elimination theory. In this paper, we show that the sparse difference resultant of a generic Laurent transformally essential system can be computed via the sparse resultant of a simple algebraic system arising from the difference system. Moreover, new order bounds of sparse difference resultant are found. Then we propose an efficient algorithm to compute sparse difference resultant which is the quotient of two determinants whose elements are the coefficients of the polynomials in the algebraic system. The complexity of the algorithm is analyzed and experimental results show the efficiency of the algorithm.
翻译:在 \ citep{gao-2015} 中引入的微小差异结果,是消除差异理论中的一个基本概念。 在本文中, 我们显示, 通用的Laurent 变形基本系统产生的微小差异, 可以通过差异系统产生的简单代数系统产生的微小结果来计算。 此外, 也发现了微小差异结果的新顺序界限。 然后我们建议一种有效的算法, 来计算稀小差异结果, 也就是两个决定因素的商数, 其要素是代数系统中多义数系数。 算法的复杂性得到分析, 实验结果显示算法的效率 。