Malware affects millions of users worldwide, impacting the daily lives of many people as well as businesses. Malware infections are increasing in complexity and unfold over a number of stages. A malicious downloader often acts as the starting point as it fingerprints the victim's machine and downloads one or more additional malware payloads. Although previous research was conducted on these malicious downloaders and their Pay-Per-Install networks, limited work has investigated how the profile of the victim machine, e.g., its characteristics and software configuration, affect the targeting choice of cybercriminals. In this paper, we operate a large-scale investigation of the relation between the machine profile and the payload downloaded by droppers, through 151,189 executions of malware downloaders over a period of 12 months. We build a fully automated framework which uses Virtual Machines (VMs) in sandboxes to build custom user and machine profiles to test our malicious samples. We then use changepoint analysis to model the behavior of different downloader families, and perform analyses of variance (ANOVA) on the ratio of infections per profile. With this, we identify which machine profile is targeted by cybercriminals at different points in time. Our results show that a number of downloaders present different behaviors depending on a number of features of a machine. Notably, a higher number of infections for specific malware families were observed when using different browser profiles, keyboard layouts and operating systems, while one keyboard layout obtained fewer infections of a specific malware family. Our findings bring light to the importance of the features of a machine running malicious downloader software, particularly for malware research.
翻译:恶意下载器通常作为起点,在12个月内对受害人的机器进行指纹检查,并下载更多恶意软件有效载荷。虽然以前对这些恶意下载器及其Pay-Per-Install网络进行了研究,但调查受害者机器的配置(例如其特性和软件配置)如何影响网络罪犯的选择选择目标的工作有限。在本文中,我们通过151 189次执行恶意下载器下载器下载有效载荷特性,对机器配置与下载器下载坏账特性之间的关系进行了大规模调查。我们建立了一个完全自动化的框架,在沙箱中使用虚拟机(VMs)来建立客户用户和机器配置,以测试我们的恶意样本。我们随后使用变点分析来模拟不同下载器家庭的行为,并分析每份感染比例的差异(ANOVA)。我们通过这个系统,通过151 189次执行一个机器配置,将一个特定坏账的坏账下载特性作为目标,在不同的计算机服务器的运行模式中显示一个不同的系统,在不同的时间里,一个不同的系统里,一个不同的系统里,一个不同的系统里,一个不同的系统里,一个不同的机器配置显示一个特定的系统, 一个特定的系统,一个特定的系统里程,一个特定的系统里,一个特定的系统里,一个特定的系统里,一个特定的系统,一个特定的系统, 一个系统里, 显示一个系统里,一个不同的系统里,一个特定的系统里,一个特定的系统里,一个特定的系统里,一个系统里, 显示一个系统里,一个系统里,一个系统里,一个系统里,一个系统里,一个系统里,一个比。