An advantage of seq2seq abstractive summarization models is that they generate text in a free-form manner, but this flexibility makes it difficult to interpret model behavior. In this work, we analyze summarization decoders in both blackbox and whitebox ways by studying on the entropy, or uncertainty, of the model's token-level predictions. For two strong pre-trained models, PEGASUS and BART on two summarization datasets, we find a strong correlation between low prediction entropy and where the model copies tokens rather than generating novel text. The decoder's uncertainty also connects to factors like sentence position and syntactic distance between adjacent pairs of tokens, giving a sense of what factors make a context particularly selective for the model's next output token. Finally, we study the relationship of decoder uncertainty and attention behavior to understand how attention gives rise to these observed effects in the model. We show that uncertainty is a useful perspective for analyzing summarization and text generation models more broadly.


翻译:在这项工作中,我们通过研究模型象征性水平预测的酶性或不确定性,以黑盒和白盒两种方式分析总和解码器。对于两个经过预先训练的强力模型,即PEGASUS和BART在两个总和数据集上的强势模型,我们发现低预测酶和模型复制符号而不是生成新文本之间的紧密关联。解码器的不确定性还连接到诸如句子位置和相邻象征物组合距离等因素,从而感知哪些因素使得模型下一个输出符号具有特别选择性。最后,我们研究了解码器不确定性和注意行为之间的关系,以了解注意如何引起模型中观察到的这些效应。我们表明,不确定性是分析总和文本生成模型的有用视角。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【ICML2020】文本摘要生成模型PEGASUS
专知会员服务
35+阅读 · 2020年8月23日
【Facebook AI】低资源机器翻译,74页ppt
专知会员服务
30+阅读 · 2020年4月8日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文报告 | Graph-based Neural Multi-Document Summarization
科技创新与创业
15+阅读 · 2017年12月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2019年9月5日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
6+阅读 · 2018年2月28日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文报告 | Graph-based Neural Multi-Document Summarization
科技创新与创业
15+阅读 · 2017年12月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员