In the classical Subset Sum problem we are given a set $X$ and a target $t$, and the task is to decide whether there exists a subset of $X$ which sums to $t$. A recent line of research has resulted in $\tilde{O}(t)$-time algorithms, which are (near-)optimal under popular complexity-theoretic assumptions. On the other hand, the standard dynamic programming algorithm runs in time $O(n \cdot |\mathcal{S}(X,t)|)$, where $\mathcal{S}(X,t)$ is the set of all subset sums of $X$ that are smaller than $t$. Furthermore, all known pseudopolynomial algorithms actually solve a stronger task, since they actually compute the whole set $\mathcal{S}(X,t)$. As the aforementioned two running times are incomparable, in this paper we ask whether one can achieve the best of both worlds: running time $\tilde{O}(|\mathcal{S}(X,t)|)$. In particular, we ask whether $\mathcal{S}(X,t)$ can be computed in near-linear time in the output-size. Using a diverse toolkit containing techniques such as color coding, sparse recovery, and sumset estimates, we make considerable progress towards this question and design an algorithm running in time $\tilde{O}(|\mathcal{S}(X,t)|^{4/3})$. Central to our approach is the study of top-$k$-convolution, a natural problem of independent interest: given sparse polynomials with non-negative coefficients, compute the lowest $k$ non-zero monomials of their product. We design an algorithm running in time $\tilde{O}(k^{4/3})$, by a combination of sparse convolution and sumset estimates considered in Additive Combinatorics. Moreover, we provide evidence that going beyond some of the barriers we have faced requires either an algorithmic breakthrough or possibly new techniques from Additive Combinatorics on how to pass from information on restricted sumsets to information on unrestricted sumsets.


翻译:在经典的Subset 问题中, 我们得到一个设定的 x$ 和一个目标 $, 而任务在于决定是否有一个子集 $X 的子集 =x = 美元 = 美元 = = = = = = = = = = = = = = = = = = = = = = = 美元 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
58+阅读 · 2021年4月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
13+阅读 · 2019年4月17日
Arxiv
0+阅读 · 2021年9月28日
Arxiv
0+阅读 · 2021年9月28日
Arxiv
0+阅读 · 2021年9月27日
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关VIP内容
专知会员服务
58+阅读 · 2021年4月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
13+阅读 · 2019年4月17日
Top
微信扫码咨询专知VIP会员