Document-level relation extraction (RE) aims to extract the relations between entities from the input document that usually containing many difficultly-predicted entity pairs whose relations can only be predicted through relational inference. Existing methods usually directly predict the relations of all entity pairs of input document in a one-pass manner, ignoring the fact that predictions of some entity pairs heavily depend on the predicted results of other pairs. To deal with this issue, in this paper, we propose a novel document-level RE model with iterative inference. Our model is mainly composed of two modules: 1) a base module expected to provide preliminary relation predictions on entity pairs; 2) an inference module introduced to refine these preliminary predictions by iteratively dealing with difficultly-predicted entity pairs depending on other pairs in an easy-to-hard manner. Unlike previous methods which only consider feature information of entity pairs, our inference module is equipped with two Extended Cross Attention units, allowing it to exploit both feature information and previous predictions of entity pairs during relational inference. Furthermore, we adopt a two-stage strategy to train our model. At the first stage, we only train our base module. During the second stage, we train the whole model, where contrastive learning is introduced to enhance the training of inference module. Experimental results on three commonly-used datasets show that our model consistently outperforms other competitive baselines.
翻译:文件级关系提取(RE)的目的是从通常包含许多难以预测的实体对对,其关系只能通过关系推断来预测的输入文件中摘取各实体之间的关系。现有方法通常直接预测所有实体对投入文件的一对关系,忽视某些实体对口的预测严重依赖其他对口的预测结果这一事实。为处理这一问题,我们在本文件中提议了一个具有迭接推理的新型文件级RE模型。我们的模式主要由两个模块组成:1)一个基础模块,预期将提供实体对口的初步关系预测;2)一个推断模块,通过反复处理困难预测的实体对口文件,以简单易懂的方式,直接预测所有实体对口输入文件之间的关系,忽视某些实体对口的预测严重取决于其他对口的预测结果。与以前只考虑实体对口的特征信息的方法不同,我们的推断模块配备了两个扩展的交叉注意模型,使其能够利用特征信息,以及以前对口实体对口的预测。此外,我们采用两个阶段的战略来改进初步预测这些初步预测,我们采用两个阶段的战略来培训我们的竞争模型。 在试验模型的第一阶段,我们不断学习的模型中,我们唯一的一个是整个学习。