To achieve seamless human-robot interactions, robots need to intimately reason about complex interaction dynamics and future human behaviors within their motion planning process. However, there is a disconnect between state-of-the-art neural network-based human behavior models and robot motion planners -- either the behavior models are limited in their consideration of downstream planning or a simplified behavior model is used to ensure tractability of the planning problem. In this work, we present a framework that fuses together the interpretability and flexibility of trajectory optimization (TO) with the predictive power of state-of-the-art human trajectory prediction models. In particular, we leverage gradient information from data-driven prediction models to explicitly reason about human-robot interaction dynamics within a gradient-based TO problem. We demonstrate the efficacy of our approach in a multi-agent scenario whereby a robot is required to safely and efficiently navigate through a crowd of up to ten pedestrians. We compare against a variety of planning methods, and show that by explicitly accounting for interaction dynamics within the planner, our method offers safer and more efficient behaviors, even yielding proactive and nuanced behaviors such as waiting for a pedestrian to pass before moving.


翻译:为了实现无缝的人类机器人互动,机器人需要在其运动规划过程中深入地了解复杂的互动动态和未来人类行为。然而,基于人类行为的最新神经网络模型与机器人运动规划者之间存在脱节 -- -- 要么行为模型对下游规划的考虑有限,要么使用简化行为模型来确保规划问题的可移动性。在这项工作中,我们提出了一个框架,将轨迹优化的可解释性和灵活性与最新人类轨迹预测模型的预测力结合起来。特别是,我们利用数据驱动的预测模型的梯度信息,在基于梯度的问题中明确解释人类机器人互动动态。我们展示了我们多试样情景中的方法的功效,即机器人需要安全而高效地在多达10个行人人群中行驶。我们比较了各种规划方法,并表明,通过明确计算规划者内部的互动动态,我们的方法提供了更安全、更高效的行为,甚至产生了积极和细致的行为,例如等待行人行走前行走。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
64+阅读 · 2020年7月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月21日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员