Device identification is one way to secure a network of IoT devices, whereby devices identified as suspicious can subsequently be isolated from a network. We introduce a novel fingerprinting method, IoTDevID, for device identification that uses machine learning to model the behaviour of IoT devices based on network packets. Our method uses an enhanced combination of features from previous work and includes an approach for dealing with unbalanced device data via data augmentation. We further demonstrate how to enhance device identification via a group-wise data aggregation. We provide a comparative evaluation of our method against two recent identification methods using three public IoT datasets which together contain data from over 100 devices. Through our evaluation we demonstrate improved performance over previous results with F1-scores above 99%, with considerable improvement gained from data aggregation.
翻译:设备识别是保证IoT装置网络安全的一种方法,通过这个方法,被确认可疑的装置可以随后从网络中分离出来。我们采用了一种新型的指纹识别方法,即IoTDevID,用于设备识别,使用机器学习来模拟基于网络包的IoT装置的行为模式。我们的方法使用了以前工作中的强化组合功能,包括了一种通过数据增强处理不平衡设备数据的方法。我们进一步展示了如何通过群体数据汇总加强设备识别的方法。我们用三个公开的IoT数据集对两种最近的识别方法进行了比较评估,这三个数据集合在一起含有100多个装置的数据。通过我们的评估,我们展示了比以往99%以上的F1芯结果更好的性能,从数据汇总中取得了相当大的改进。